US009430396B2

a2 United States Patent

Kumar et al.

US 9,430,396 B2
Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

UPDATING PERSISTENT DATA IN
PERSISTENT MEMORY-BASED STORAGE

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Sanjay Kumar, Hillsboro, OR (US);
Rajesh Sankaran, Portland, OR (US);
Subramanya Dulloor, Hillsboro, OR
(US); Sheng Li, Santa Clara, CA (US)
Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 80 days.

Appl. No.: 14/579,934
Filed: Dec. 22, 2014

Prior Publication Data

US 2016/0179687 Al Jun. 23, 2016

Int. CL.

GO6F 12/08 (2016.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC GO6F 12/0891 (2013.01); GOGF 3/0619

(2013.01); GO6F 3/0653 (2013.01); GO6F
3/0671 (2013.01); GO6F 2212/1032 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2015/0006834 Al 1/2015 Dulloor et al.

OTHER PUBLICATIONS

Zhao, Jishen et al. “Kiln: Closing the Performance Gap Between
Systems With and Without Persistence Support” MICRO-46, Dec.
7-11, 2013, Davis, CA pp. 421-432.

Venkataraman, Shivaram et al., “Consistent and Durable Data
Structures for Non-volatile Byte-addressable Memory”, FAST 2011
Proceedings of the 9th USENIX Conference on File and Storage
Technologies, Berkeley, CA 2011, 15 pages.

Primary Examiner — Kevin Verbrugge
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

A processor includes a processing core to execute an appli-
cation including instructions encoding a transaction with a
persistent memory via a volatile cache that includes a cache
line associated with the transaction, the cache line being
associated with a cache line status, and a cache controller
operatively coupled to the volatile cache, the cache control-
ler, in response to detecting a failure event, to, in response
to determining that the cache line status that the cache line
is committed, evict contents of the cache line to the persis-
tent memory, and in response to determining that the cache
line status indicating that the cache line is uncommitted,
discard the contents of the cache line.

23 Claims, 13 Drawing Sheets

Processing Core
104

TxID Reg 122

A

Processor 102

Cache Controller

Near Memory

106

A

100

Interconnect 108

< ,

A

Status Content
//b CUR_TxID 120 124 126
Cache Line Near Memory Cache 110
112
118
h 4
Non-Persistsent Persistent

Memory 116 Memory 114

US 9,430,396 B2

Sheet 1 of 13

Aug. 30, 2016

U.S. Patent

V1 2inbi4

001

VTIT AMowa 9T T Alowa
1uUd1sIsiad 1UBS1SISIad-UON
N:\> — 81T
OTT 2yoed Aowa|y JeaN aurt ayden

9zT 174"
LU0y | smeis

0CT AIXL ¥nd

A\

\

0T 199UU02I21U|

|

| w

Y
901 —
J3J|041U0) 3yde) CCT 89y aIxL
AJowa|p Jeod —
N N 701
2107 8uissadold

70T J0SS22044

US 9,430,396 B2

Sheet 2 of 13

Aug. 30, 2016

U.S. Patent

g1 a.nbi4

V1T AMowa
UM IIER

911 AMowasp
1U351SISI9d-UON

37T 198eue Nd <

0GT 90€}421U] ||BD WISAS

A 4

9¥T pe=Jyl LOm_>Lwn_ ns

77T waisAg SuneldadQo

YT peaiy] 19sn

O¥T uonediddy Jasn

US 9,430,396 B2

Sheet 3 of 13

Aug. 30, 2016

U.S. Patent

gz 2.nbi4
81T
vT 21818 — - _ L
NWWo? T axt ZT¢ 3eld 0Tc eieq 80z Se|
vz 24nbi4
44"

~

0C AIXL ¥HL ¥nD | PO AIXL "YHL S

20C AIXL ¥HL N

US 9,430,396 B2

Sheet 4 of 13

Aug. 30, 2016

U.S. Patent

€ 24nbi4

00¢

0€T
807 e1eq
— * —
VT Aowsy YET saull ayoed) Mmo|Hsn0 7 9TT AMowsy
1Ud1sISIad 1U3S1SISIDd-UON

N:\> — 81T
OTT 2yoe) Alows|p JeaN aur ayoed
9zt Vel | e - |

WSO sn1e1S 0T diXL 4Nd |«

0T 122uu0di21u|

]

|

-
'

| v
¢ 89y aixL
ZET 49|[043u0) 90T
Aowba Jeq Ja|joJluo) ayoe) T0T
Aowa| JeaN 5107 8UIS$9014
70T 40S52204d

US 9,430,396 B2

Sheet 5 of 13

Aug. 30, 2016

U.S. Patent

7 24nbi4

0TV AYOWIN
1N31SISHAd IHL OL AN
JHOVD 3H1 40 1INJLNOD 10IA3

CT¥ ANITIHOVD
dH1 40 INJINOD IH1 advosId

807

31VS 3ANIT IHOVD INIWYALAd

pa2l1liuwodun p2riwwo)

90t INJAT FdNTIVH vV 103130

YOV 31V1S IANIT IHOVD V HLIM d3LVIDOSSY INIT
FHOVO V ONIANTONI FHIVD FTLVIOA V VIA AHOWAIN
1N3ISISHAd V HLIM NOILOVSNVYL V 31ND3Xd

oot

US 9,430,396 B2

Sheet 6 of 13

Aug. 30, 2016

U.S. Patent

208
Yo3e4

005
S~ auadid

a9 ‘old
T e = | = | 1 N —
== | 025 5T 7Ig == — s | & 705
A Bulpuey SJUM 91§ peay Alowa Zig ' 0Ig ' B0G | 90%
: il _ I Buipooa
Jwwon) " UONGeoXT Aiowap abe)g 9)noaxg oeay Ja1sIBaY 3Inpayos | Buiweusy,; 00|y [8p0da(Emc m._n_
||||| R R _ !
Ve ol4
_ 749
- 9/ B Jun syoeg ejeg a7
Jun 8Yded 1 7T yun Aowsy
un g1l eyeg
Jo% (s)isjsn|n uonnoax3
79% (shun 7% < | 765 vosouny
$5600y Alowsy (s)un uonnosxy yseH Aem-|
Y
|||||| J=——————————F————————==7

855

75
UM aWalney

JFS un 9pooa(_

)

§EG Ydyed uoponisu| _

)

923 Wun g11 uondnasuy|

759

hun puzjuold

%53

FET UM 8YeD Uononisu|

iun uonoipald Youelg

065
9100)

US 9,430,396 B2

Sheet 7 of 13

Aug. 30, 2016

U.S. Patent

ssedAg / 9|14 JaisiBay d4

9 "9l

ayoen | [aAeT 0L ayoen | [eAs] 0]

2 Y 3

_ _ _ _
79 a9 029 819 919 719 ci9
SN0 dd dd NV MOl NV 1sed NV ised nov novy
i y
OI9 YomeN 809

yiomaN ssedAg / a1 Jeisibay Jobau|

/ 119
Y00/ 9%3

£09
~auiblF 19pI0 JO N0

(N 009
10559901/

A A A A A A A
909 1eInpayds 709 209 18|NPaYOS
d4 ejdwig 18|NPaYoS d4 [eIRUsD/MOIS ls|npayds 1se4 flowsy
A A A A
ananp)
anany) 4o Juod bBuieo|4/1e6s)u 40N Aowspy
))
Jaweuay JoysiBay/101e20|y
\
75 0£9
m:m:% 40N ayoen soel]
\
0E9 L
WOY 829
2PO020IDI|A J3p0d3g uononijsu|
\
109 99
pug Juol4 182184814 uononnsuy|

US 9,430,396 B2

Sheet 8 of 13

Aug. 30, 2016

U.S. Patent

L Ol
0c7
Bjeq puy 8pod
757 77 7zl
5zZ_sbeiois eeq $80IAS(] WWOo) 8SNop/pIe0gAay
02/
244 FI7 817
O/l olpny se01A8(O/l obpug sng
,@t&
%7 767
Ell |\ o
967 L 757 solydels pad-ybiH
d-d 067 19sdyD d-d
7~ Z7~1
967 774 ™ 577 774
dd dd T d-d dd
051
1794 74 774 L
Aowsy NI O Aows|y
08/ 10s$9201d 077 108889014

ooz

U.S. Patent

Aug. 30, 2016

Sheet 9 of 13

Processor
810

845

Display

US 9,430,396 B2

ICH
850

Memory
840

External Graphics

Device
860

Peripheral
870

FIG. 8

US 9,430,396 B2

Sheet 10 of 13

Aug. 30, 2016

U.S. Patent

7s6
Kowsy

6
faowsy

6 9l
913
0/ AoebaT
96
4/l
866 . 766
d-d 066 19sdiyd d-d
— — |
775 ~_| 75~
986 886 ™ 276 976
d-d dd / d-d d-d
056
86 6
10 10
086 10S$320.d 076 10S$89014
203
$90IA3(O]

/%m

US 9,430,396 B2

Sheet 11 of 13

Aug. 30, 2016

U.S. Patent

oL "9l
___ — ___ 5T0T o i
0r0!1 2801 0801 (s) 8201 _
Hun J9]j10U0H _
un Aeidsig N YWa Jun WVES AJoWws| poreIBaN] _ 10888001 08PIA |
T
_ 9201 !
_ 108s80014 Olpny L_
\ _ﬂr|||||||||||||||||||||||||||_
| 70 _
(shun _%__Nommcoo sng (S)iun 198UUIBIU| \k_ 10ss800.1d abew| "
) / S |
ittty
| - |
o e _ 8001 |
i _ d_ / soydeio psjesbaj| |
_ " 9001 " bt .
[sS)un syoe) pase —
! Jun syde) paleys “ 0o01
L fm—— - (5)108$80014 BIPS|y
|
0107 | ____
un waby wejsAs | NrO0L [V00!
_ (shun o @ @ (shiun
| syoen “ 8yoen
| |
|
| NZooy dw0p | V2007 9100
I 01o0L / 0001
10ss82014 uoneolddy diy) v uQ woisAs

US 9,430,396 B2

Sheet 12 of 13

Aug. 30, 2016

U.S. Patent

LL"Ol4
9911
|0JU07) JoMmod
9911 0911
yseld4 Wvdd
7911 B A A
I4IM 117208
= grll oril GELL 0Ll <
Jd 19|]0:3u0D ysel4 18(104u00 NYHAS NOY 1009 WIS
08L1 < ——
Sd9 Iy
108UUCOJBYU|
—_ N[e
0Ll 6011
9yded ¢1 PAN Jun soeUS| SNY
/11 - GZLl —
WSPON O¢ 4/] 08PIA 4O AN [m §0L1 10U0] 8Yde) 77
99P07) OSPIA Ndo
011 9011
810D 8109
T | \
yiodenig N<5011
v/%:

U.S. Patent

Aug. 30, 2016

PROCESSOR 1202

PROCESSING
LOGIC 1226

MAIN MEMORY 1204

INSTRUCTIONS ||

1226

GRAPHICS
PROCESSING
UNIT
1222

VIDEO
PROCESSING
UNIT
1228

Y

AUDIO
PROCESSING
UNIT
1232

\

A

NETWORK
INTERFACE
DEVICE
1208

\

\ 4

A

Sheet 13 of 13

/ 1200

| STATIC MEMORY

1206

A

BUS
Vmﬂ

VIDEO DISPLAY

1210

/'

Y

ALPHA-NUMERIC

INPUT DEVICE
1212

A

CURSOR
CONTROL
DEVICE
1214

y

SIGNAL
GENERATION
DEVICE
1216

US 9,430,396 B2

DATA STORAGE DEVICE

1218

A

MACHINE-READABLE
MEDIUM 1224

SOFTWARE

1226

FIG. 12

US 9,430,396 B2

1
UPDATING PERSISTENT DATA IN
PERSISTENT MEMORY-BASED STORAGE

TECHNICAL FIELD

The embodiments of the disclosure relate generally to
managing persistent memory and, more specifically, to pro-
viding in-place consistent updates to data stored in persistent
memory.

BACKGROUND

Persistent memory is a type of memory device that
exhibits both the properties of memory and storage. Similar
to memory, the persistent memory may be addressed at the
byte level by central processing unit (CPU) load and store
instructions with performance close to the memory (typi-
cally, at 2-5x slower than dynamic random-access memory
(DRAM)). Similar to storage, the persistent memory is
non-volatile in the sense that data stored on the persistent
memory is retrievable even when the persistent memory is
powered off. A CPU may use the persistent memory as a data
store and execute atomic data transactions to modify data
stored on the persistent memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be understood more fully from the
detailed description given below and from the accompany-
ing drawings of various embodiments of the disclosure. The
drawings, however, should not be taken to limit the disclo-
sure to the specific embodiments, but are for explanation and
understanding only.

FIG. 1A illustrates a processing system including two-
level memory according to an embodiment of the present
disclosure.

FIG. 1B illustrates an operating system managing the
persistent memory according to an embodiment of the
present disclosure.

FIG. 2A illustrates content of transaction identifier regis-
ter according to an embodiment of the present disclosure.

FIG. 2B illustrates a cache line of a cache according to an
embodiment of the present disclosure.

FIG. 3 illustrates a processing system including two-level
memory according to another embodiment of the present
disclosure.

FIG. 4 is a block diagram of a method to consistently
manage a two-level memory including a persistent memory
according to an embodiment of the present disclosure.

FIG. 5A is a block diagram illustrating a micro-architec-
ture for a processor including heterogeneous core in which
one embodiment of the disclosure may be used.

FIG. 5B is a block diagram illustrating an in-order pipe-
line and a register renaming stage, out-of-order issue/execu-
tion pipeline implemented according to at least one embodi-
ment of the disclosure.

FIG. 6 illustrates a block diagram of the micro-architec-
ture for a processor that includes logic in accordance with
one embodiment of the disclosure.

FIG. 7 is a block diagram illustrating a system in which
an embodiment of the disclosure may be used.

FIG. 8 is a block diagram of a system in which an
embodiment of the disclosure may operate.

FIG. 9 is a block diagram of a system in which an
embodiment of the disclosure may operate.

FIG. 10 is a block diagram of a System-on-a-Chip (SoC)
in accordance with an embodiment of the present disclosure

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11 is a block diagram of an embodiment of an SoC
design in accordance with the present disclosure.

FIG. 12 illustrates a block diagram of one embodiment of
a computer system.

DETAILED DESCRIPTION

Atomicity with respect to a transaction ensures that the
data stored in the persistent memory always remain in a
consistent state even in the event of power or system
failures. Atomicity of a transaction guarantees that the
transaction completes or has no effect. Atomicity is a com-
mon feature for storage systems including persistent
memory. However, due to power or system failures, a
transaction may be only partially completed, thus violating
the atomicity of the transaction and leaving the content of
persistent memory in a potentially inconsistent state. To
prevent such condition from happening, the persistent trans-
actions may need to include certain consistency mechanisms
to preserve atomicity of a transaction to persistent memory.
Typical consistency mechanisms include journaling, copy-
on-write (CoW), and log-structured mechanism. These con-
sistency mechanisms are software-based approaches that
may cause significant performance overhead to underlying
transactions. Additionally, race conditions may also occur if
the data stored on the persistent memory is also accessed by
other components (e.g., other CPUs, /O devices, etc.) while
the CPU performs a transaction (e.g., other components
accessing partial updates). This may cause the output of the
transaction being partially visible to other parts of the
system and hence violate the transaction atomicity. To
prevent the race condition from happening, the persistent
transactions may need to include lock mechanisms.

Embodiments of the present disclosure significantly
reduce the overhead to maintain the consistency of transac-
tions with persistent memory of processing systems includ-
ing two or more levels of memory. The processing systems
described herein may take advantage of certain properties of
a first level memory (e.g., a near memory cache (NMC)) to
record an implicit log of transactions with a second level
memory (e.g., the persistent memory), thus eliminating the
need for explicit software-based consistency mechanisms
(e.g., journaling or CoW).

FIG. 1A illustrates a processing system 100 including a
two-level memory according to an embodiment of the
present disclosure. In one embodiment, the processing sys-
tem 100 may be implemented as a system-on-a-chip (Soc).
The processing system 100 may include a processor 102
(such as a CPU) and a two-level memory that may include
a first level memory 110 (hereafter referred to as the near
memory cache due to its proximity to the processing core
and being used as a cache for far memory) and a second level
memory 112 (hereafter referred to as the far memory). In one
embodiment, the first level memory may include volatile
memory (such as volatile DRAM) implemented to function
as a software-transparent near memory cache 110. In one
embodiment, the near memory cache may be a last level
cache (LLC) associated with the processor 102. The second
level memory 112 may be software-visible and may include
both persistent memory 114 and non-persistent memory 116
(such as a volatile memory). The processor 102, the near
memory cache 110, and the far memory 112 are communi-
catively connected via an interconnect 108.

In one embodiment, the processor 102 may include a
processing core 104 and a near memory cache controller
(hereafter referred to as “cache controller”) 106. The pro-
cessing core 104 may execute tasks including applications of

US 9,430,396 B2

3

different priority levels. For example, the processing core
104 may execute the kernel of an operating system (OS)
having a priority level of the supervisor and/or user appli-
cations having a priority level of the user. The applications
executed by the processing core 104 may include transac-
tions with the persistent memory 114. As discussed above,
these transactions should be executed in atomic manners that
ensure consistent states of data stored in the persistent
memory 114.

In one embodiment, the near memory cache 110 is imple-
mented as a cache to the far memory including the persistent
memory 114 and the non-persistent memory 116. The near
memory cache 110 may cache data relating to the transac-
tions with the persistent memory 114 originated from the
processing core 104 or from other processing cores that are
capable of executing transactions with the persistent
memory 114. In one embodiment, the cache controller 106
is a logic circuit that monitors the transactions at the
persistent memory 114 and correspondingly, cache data
relating to the transactions in the near memory cache 110. In
one embodiment, in response to detecting a request to write
data to the persistent memory 114, the cache controller 106
may cause the data to be written in the near memory cache
110 before the data is written to the persistent memory 114.
In response to detecting a request to read data from the
persistent memory 114, the cache controller 106 may search
the data in the near memory cache 110. If the data is present
in the near memory cache 110, the cache controller 106 may
cause the processing core 104 to retrieve the data from the
near memory cache 110. If the data is not found in the near
memory cache 110, the cache controller 110 may cause the
processing core 104 to retrieve the data from the persistent
memory 114.

In one embodiment, the near memory cache 110 is con-
figured to support flush-on-fail (FoF) for data stored therein.
Data stored in the FoF near memory cache 110 is guaranteed
to be flushed to the persistent memory 114 prior to any reset
of the processing system 100. This FoF feature makes the
near memory cache 110 persistent in the sense that the data
stored in the near memory cache 110 is guaranteed to have
a chance to be flushed to the persistent memory 114. The
flush-on-fail feature of the near memory cache 110 makes it
a persistent cache because any dirty cache lines (those that
have not written out to the persistent memory) for the
persistent memory 106 are guaranteed to have a chance to be
written out to the persistent memory 106 during a system
reset. The flush from the near memory cache 110 to the
persistent memory 106 may be achieved by explicit flush
command, eviction command, or flush responsive to a power
or system failure event. The power failure event occurs
when the processing system 100 suddenly loses electrical
power, and the processing system 100 is shutting down due
to the loss of power. The system failure event occurs when
any hardware or software components of the processing
system 100 fail to function properly and cause the process-
ing system 100 to malfunction.

In one embodiment, the cache controller 106 may cause
the near memory cache 110 to function as a redo log (a file
that logs the history of all changes made to the persistent
memory 114) so that applications being executed by the
processing core 104 may perform consistent updates to the
persistent memory 114. In one embodiment, the processing
core may support certain instructions that specify the begin-
ning (e.g., PXBEGIN instruction), the end (PXEND instruc-
tion), or an abort (PXABORT instruction) of a transaction.
The software applications may use these instructions to turn
the near memory cache 110 into a redo log, thus eliminating

10

15

20

25

30

35

40

45

50

55

60

65

4

the overhead associated with using the software approaches
such as journaling, CoW, and log structure mechanism to
ensure consistency. The near memory cache 110 may
achieve performance close to volatile memory updates (or
in-place updates).

In one embodiment, the PXBEGIN instruction defines the
beginning of a persistent transaction of software applications
(or threads), and the PXEND instruction defines the end of
the transaction of the software applications (or threads). The
PXABORT instruction may be used to abort the transaction
at any point between a pair of PXBEGIN and PXEND
instructions.

In one embodiment, the processing core 104 may include
a transaction identifier register 122 to store a transaction
identifier associated with a transaction. The transaction
identifier register may be one of machine specific registers
(MSRs) of the processing core 104. Before a software
application executes the PXBEGIN to start the transaction,
the software application may make a request to the operating
system to allocate a transaction identifier (TxID) for the
software application. In one embodiment, the request may
be made in the form of a system call to the kernel of the
operating system (OS). The system call may be made to a
persistent memory (PM) manager in the OS kernel. FIG. 1B
illustrates an operating system 142 managing the persistent
memory according to an embodiment of the present disclo-
sure. As shown in FIG. 1B, a user application 140 may
include a user thread 144 that may use memory resources
(e.g., persistent memory 114 and non-persistent memory
116) through operating system 142. The operating system
142 may include a kernel executing supervisor thread 146,
a persistent memory manager 148, and a system call inter-
face 150. The user thread 144 may execute system calls, via
the system call interface 150, to the persistent memory (PM)
manager 148. Upon receiving the request either from the
user thread 144 or the supervisor thread 146, the PM
manager 148 may execute a transaction identifier allocation
function call (e.g., pm_txid_alloc()) to allocate a unique and
free TxID and store it in the transaction identifier register
122. In one embodiment, in the event that PXBEGIN is
executed prior to allocating a TxID to the software appli-
cation, the CPU fault may occur, thus stopping the transac-
tion.

In one embodiment, the context of a software application
may be extended to include OS-visible fields designated to
user-level applications, supervisor-level applications, and a
currently executing application. For example, the thread
context may be extended to include a U_THR_TXID field,
a S_THR_TXID field, and a THR_CUR_TXID field to
specify correspondingly, a user transaction identifier, a
supervisor transaction identifier, and a current transaction
identifier. Correspondingly, as shown in FIG. 2A, the TxID
register 122 may include a U_THR_TXID field 202, a
S_THR_TXID field 204, and a THR_CUR_TXID field 206.
In response to a system call, the PM manager may allocate
a first TxID for a transaction of user-level thread and store
the user-level TxXID in the U_THR_TXID field 202 of the
TxID register 122, and allocate a second TxID for a trans-
action of supervisor-level thread and store the TxID in a
S_THR_TXID field 204 of the TxID register. The TxID of
the current ongoing transaction is stored in the
THR_CUR_TXID field 206 of the TxID register 122. If
there is no currently ongoing transaction, the
THR_CUR_TXID field 206 may store a value of zero. The
values stored in the U_THR_TXID field 202, S_THR_TXID
field 204, and THR_CUR_TXID field 206 may be changed

US 9,430,396 B2

5

in response to a context switch (or switching from one
running thread to another running thread).

Prior to executing a PXBEGIN instruction to initiate a
persistent memory transaction, the software application may
make a system call to allocate a TxID and store it in the
U_THR_TXID field 202. During the execution of PXBE-
GIN instruction in the user application to initiate the per-
sistent memory transaction, the processing core 104 may
copy the value stored in the U_THR_TXID field 202 to the
THR_CUR_TXID field 206. Subsequently, the cache con-
troller 106 may tag any data flush operations from the near
memory cache 110 to the persistent memory 114 with the
TxID stored in the THR_CUR_TXID field 206. The data
flush operations may include cache line write back (CLWB),
cache line flush (CLFLUSHOPT/CLFLUSH), and non-tem-
poral stores.

A kernel (or a user application running in the context of
a kernel) may request the PM manager to allocate the TxID
and store in the S_THR_TXID field 204. During the execu-
tion of PXBEGIN instruction in the kernel (or in the context
of a kernel), the value stored in the S_THR_TXID field 204
may be copied to the THR_CUR_TXID field 206 so that the
cache controller 106 may tag any data flush operations with
the TxID stored in the THR_CUR_TXID field 206. If the
PXBEGIN is executed prior to the U_THR_TXID field 202
orthe S_THR_TXID field 204 is set, a CPU fault may occur.

In one embodiment, the U_THR_TXID and/or the
S_THR_TXID may be allocated in a delayed manner. When
the PM manager executes a function call of pm_txid_
alloc(), the function call pm_txid_alloc() does not allocate
or set the U_THR_TXID field 202. Instead, pm_txid_
alloc() records the allocation request. In response to execut-
ing the PXBEGIN instruction, a CPU fault signal may be
generated due to the missing of U_THR_TXID and/or the
S_THR_TXID. In response to detecting the CPU fault
signal, the PM manager may finally allocate the TxID and
set the U_THR_TXID field 202 in the TxID register 122.

In one embodiment, the U_THR_TXID field 202 may
further include a valid flag to indicate whether the
U_THR_TXID is allocated, and an in-use flag to indicate
whether the U_THR_TXID is being used. When the PM
manager cannot find a free TxID by calling pm_txid_
alloc() because all TxIDs have been allocated by other
threads, the PM manager may reclaim allocated but not
in-use TxID from other threads. For example, the PM
manager may identify a thread that is not in-use (in-use
bit=0), set the valid flag of the thread to 0, indicating an
invalid state, and allocate the TxID of the not in-use thread
to the current thread. The PM manager may also cause other
threads to complete their transactions or terminate misbe-
having threads to free up their TxIDs.

In one embodiment, the near memory cache 110 may
include one or more cache lines 118. FIG. 2B illustrates an
exemplary cache line 118 including a tag field 208, a data
field 210, and a flag field 212. The data field 210 may store
a copy to be written to the persistent memory 114. The tag
field 208 may store the address of the persistent memory at
which the data in the data field 210 is to be stored. The flag
212 field may include a status flag whose value indicates a
commit state of the cache line according to a certain cache
coherence protocol to ensure that the access to the cache line
118 and the corresponding data in the main memory is
consistent and correct.

In one embodiment, the cache line 118 may include the
transaction identifier TxID field 120 that may uniquely
identify a currently executed thread (or THR_CUR_TXID).
The cache controller 106 may provide a parameter to define

40

45

50

6

the number of bits in the TXID section, which, in turn,
specifies the maximum number of unique transaction iden-
tifiers that can concurrently exist (e.g., 8-bit TxID section
allows for 255 parallel transactions). The OS may use the
maximum number of transaction identifiers to track allo-
cated and free TxIDs. For example, the OS may maintain a
bit vector (e.g., 256 bit long) to track free TxIDs.

In one embodiment, the cache controller 106 may tag all
cache line flushes (CLWB/CLFLUSHOPT) and non-tempo-
ral stores by software applications or threads to the persis-
tent memory 114 with a corresponding transaction identifier
stored in the TxID field 120. A cache line is dirty if the cache
line is written to, but the content of the cache line is not
flushed out to the persistent memory yet. A cache line is not
dirty if the content of the cache line is flushed to the
persistent memory (i.e., the content of the cache line is the
same as that stored in the persistent memory) or if the cache
line is not flushed to the persistent memory yet but the
corresponding persistent memory location has not been
written by another transaction. Thus, the content of dirty
cache lines is different from the data stored at the corre-
sponding address of the persistent memory.

In one embodiment, the cache line 118 may include a
status flag 124 to indicate a commit state of the cache line
118 with respect to a persistent memory transaction. The
state may be free, uncommitted, or committed. A cache line
is associated with a free state if the cache line is not dirty, or
the cache line is dirty but the cache line caches for the
non-persistent (or volatile) memory 116, or the cache line is
dirty but the cache line caches for the persistent memory 114
and the store/flush occur outside of a transaction defined by
a PXBEGIN/PXEND pair (i.e., the persistent memory is
written to by another transaction prior to the execution of
PXBEGIN or after the execution of PXEND of the present
transaction associated with the cache line). In one embodi-
ment, the cache controller may set the value stored in the
TxID field 120 of a free cache line 118 to zero.

The cache line is associated with an uncommitted state if
the cache line caches for the persistent memory 114 and a
store or flush operation by another transaction occurs
between the PXBEGIN/PXEND pair of the present trans-
action. Since the PXEND has not been executed, the cache
line is not committed. The cache controller 106 may set the
value in the TxID field 120 of an uncommitted cache line to
non-zero and set the status flag 124 to zero. The uncommit-
ted state indicates that the content of the cache line is
different from that stored at the corresponding location of the
persistent memory, or the content of the cache line needs to
write back to the persistent memory. The uncommitted state
may transition to a committed state during a commit opera-
tion (e.g., PXEND). The commit operation may cause the
cache controller 106 to set the status flag 124 to one.
Conversely, a committed cache line may transition to the
uncommitted state (e.g., if written again by another ongoing
transaction) or to the free state (e.g., if evicted to the
persistent memory). In one embodiment, an uncommitted
cache line may not be evicted except for situations where a
near memory cache overflow occurs. The overflow situation
is handled as described below.

In one embodiment, in response to executing a PXEND
instruction by a task (such as an application or a thread), all
the uncommitted cache lines belonging to the transaction are
identified and set to the committed state atomically. The
atomicity is guaranteed by the flush-on-fail feature of the
near memory cache 110 as described above.

In one embodiment, a memory data structure may be used
to facilitate the process to identify uncommitted cache lines

US 9,430,396 B2

7

of a transaction. In one embodiment, the cache controller
106 may be operatively coupled to a data store (not shown)
to store a hash table which stores the dirty cache lines
associated with transactions executed on the processing core
104. The hash table may include entries indexed according
to transaction identifiers TxIDs. In one embodiment, all dirty
cache lines of a transaction may be chained together in a
linked list whose head may be stored in a hash table entry
identified by the TxID associated with the transaction. The
linked list may include a chain of link pointers that store the
location of the next dirty and uncommitted cache lines in the
link list. For example, 64-byte blocks may be used to store
multiple addresses of dirty cache lines of the transaction and
the last field in the block points to a next 64-byte block. The
cache controller 106 may monitor the cache line flushes
(e.g., by CLWB/CLFLUSHOPT instructions) and non-tem-
poral stores, and store the link pointer to the cache line in the
hash table. In one embodiment, the cache controller 106 is
configured to ensure that the uncommitted cache lines are
discarded in response to detecting a system failure event and
not to flush the uncommitted cache lines to the persistent
memory 114 during the flush-on-fail operation.

In one embodiment, a software application may issue the
PXABORT instruction to abort a currently running transac-
tion. In response to receiving the PXABORT instruction, the
processing core may send an ABORT message to the cache
controller 106 with the TxID stored in the THR_CUR_TXID
field 206. The cache controller 106 may identify all the dirty
cache lines in the near memory cache 110 (e.g., using the
hash table) and invalidate these cache lines by setting a valid
bit of the cache liens to an invalid state. Additionally, the
near memory cache controller 106 may free the hash table
entries and the TxID fields used by these invalidated cache
lines for other applications (or threads) to use. The process-
ing core 104 may also clear the THR_CUR_TXID field 206.

A near memory cache overflow occurs when the near
memory cache 110 does not have enough cache lines to store
the uncommitted cache lines for write transactions to the
persistent memory 114. Instead of aborting the on-going
transactions when a near memory cache overflow occurs,
embodiments of the present disclosure may evict the cache
lines in the near memory cache 110 to the far memory (e.g.,
the persistent memory 114). FIG. 3 illustrates a processing
system 300 that may handle the near memory cache over-
flows according one or more embodiments of the present
disclosure. As shown in FIG. 3, the processing system 300
may include similar components as those shown in FIG. 1A.
Additionally, the persistent memory 114 may include a data
log 130 to store the evicted cache lines due to the near
memory cache overflow, and the processor 102 may include
a far memory controller 132 to manage the data log 130
stored in the far memory (e.g., the persistent memory 114).
Alternatively, a persistent memory controller of a memory
module on which the persistent memory 114 resides may
manage the data log 130.

In one embodiment, the data log 130 may include an undo
log to record the overflown cache lines 134 evicted from the
near memory cache 110. Before an overflow cache line is
evicted to the far memory (e.g., the persistent memory 114),
the original content at the corresponding location in the far
memory is copied to the undo log. The cache controller 106
may record the transaction identifiers (TxIDs) of overflown
transactions and transmit these TxIDs to the far memory
controller 132 (hereafter referred to as “memory controller
132”). The memory controller 132 may then store the TxIDs
of the overflown transactions in corresponding entries of the
undo log.

10

15

20

25

30

35

40

45

50

55

60

65

8

In one embodiment, the hash table of the TxIDs may
include an overflow status flag that may be set by the cache
controller 106 to indicate that an overflow has occurred. In
response to detecting a commit operation, the cache con-
troller 106 may examine the overflow bit. In response to
determining that the overflow bit is set (i.e., indicating that
an overflow has already occurred), the cache controller 106
may instruct the memory controller 132 to command the
undo log to commits the overflown cache lines stored in the
undo log for the transaction. In one embodiment, in response
to detecting a system failure event during the transaction that
overtflows the near memory cache 110, the memory control-
ler 132 may use the undo log may roll back the original
content in the far memory by restoring the original content
stored in the overflow cache lines. Evicted cache lines that
have been written or read again during the transaction may
be treated as if they are non-evicted cache lines.

In one embodiment, the memory controller 132 may be
used to implement the undo log. The far memory controller
132 may keep a journal of the overflown cache lines evicted
into the undo log. In response to a commit event or an abort
event, the cache controller 106 may command the memory
controller 132 to commit or abort the cache lines in the undo
log for the transaction. In another embodiment, the persis-
tent memory manager in the OS may implement the undo
log. In response to a near memory cache overflow, an
interrupt may be generated by the cache controller 106 to the
persistent memory manager which performs journaling for
the original content of the overflown cache line into the undo
log, followed by the actual eviction. In response to a commit
event or an abort event, the cache controller 106 may
generate another interrupt to the persistent memory manager
to instruct the persistent memory manager to commit or
abort the overflown cache lines of the transaction stored in
the undo log.

In one embodiment, the data log may be implemented as
aredo log. Similarly, the redo log may be implemented using
the memory controller 132. The memory controller 132 may
add the overflown cache lines (including their values) and
their corresponding memory addresses to the redo log during
the eviction. During commit or abort, in response to the
cache controller’s command, the memory controller 132
also commits or aborts the cache lines stored in the redo log
for the associated transaction. At commit, the far memory
controller 132 may apply the changes logged in the redo log
to the corresponding memory locations. At abort, the far
memory controller 132 may simple discard the incomplete
redo log.

In one embodiment, the redo log may be implemented
using the persistent memory manager of the operating
system similar to the undo log as discussed above. When
overflown cache lines evicted into the redo log are read
again during the same transaction, the memory controller
132 or the persistent memory manager may return the data
from the redo log. For read operations by overflown trans-
actions, the cache controller 106 may issue the read opera-
tions with a special indicator (e.g., a flag bit) and the
corresponding TxID to the memory controller 132 or the
persistent memory manager which may store the data using
the redo log in the persistent memory.

The overflow of cache lines causes the eviction of
selected blocks of cache lines into the persistent memory. In
one embodiment, the evicted blocks of cache lines are
selected according to an eviction policy. In one embodiment,
the cache controller 106 may choose to evict cache lines of
a transaction based on the resources used by the transaction.
For example, the cache controller 106 may choose the

US 9,430,396 B2

9

transaction holding the largest number of dirty cache lines in
a set of transactions as the target for eviction to the data log
in the persistent memory 114. This has the benefit of
preventing the transaction with heavy writes and large
datasets from seizing resources of the cache controller 106.
As a result, the rate of overflow occurrence for subsequent
transactions may be reduced.

In one embodiment, a first ongoing transaction may
include instructions to call for a second transaction prior to
the commitment of the first transaction. The first transaction
is an outer transaction, and the second transaction is the
inner transaction. In this situation, the inner transaction and
the outer transaction are independently atomic. In one
embodiment, the context fields U_THR_TXID 202 and
S_THR_TXID 204 may be extended into arrays that include
one or more entries to support multiple layers of transaction
nesting. In one embodiment, the U_THR_TXID and
S_THR_TXID may each have N elements to support N
layers of nesting. The software application may request the
persistent memory manager to pre-allocate a number of
TxIDs (e.g., M TxIDs) for N levels of nesting. The persistent
memory manager may allocates M TxIDs and set them in the
U_THR_TXID and S_THR_TXID arrays. During the
execution of the nested transactions, in response to the
execution of a first PXBEGIN instruction, the processing
core 104 may copy a first element in the U_THR_TXID
array (for a user application) or in the S_THR_TXID array
(for a supervisor application) to the THR_CUR_TXID field
206. In response to the execution of a second PXBEGIN
instruction within the first transaction initiated with the first
PXBEGIN instruction, the processing core 104 may copy a
second element in the U_THR_TXID array or the
S_THR_TXID array to the THR_CUR_TXID field 206. In
response to the execution of a PXEND or PXABORT
instruction, the processing core 104 may set the
THR_CUR_TXID field 206 to a previous element of the
U_THR_TXID array or the S_THR_TXID array, or to zero
if the current transaction is the outermost transaction among
the nesting transactions. In one embodiment, the OS may
issue a PXABORT to terminate all the running transactions
in the U_THR_TXID array and the S_THR_TXID array.

FIG. 4 is a block diagram of a method 400 to provide
consistent updates to persistent memory according to an
embodiment of the present disclosure. Method 400 may be
performed by processing logic that may include hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (such as instructions run on a process-
ing device, a general purpose computer system, or a dedi-
cated machine), firmware, or a combination thereof. In one
embodiment, method 400 may be performed, in part, by
processing logics of the processor 102 including processing
core 104 and cache controller 106 as shown in FIG. 1A.

For simplicity of explanation, the method 400 is depicted
and described as a series of acts. However, acts in accor-
dance with this disclosure can occur in various orders and/or
concurrently and with other acts not presented and described
herein. Furthermore, not all illustrated acts may be per-
formed to implement the method 400 in accordance with the
disclosed subject matter. In addition, those skilled in the art
will understand and appreciate that the method 400 could
alternatively be represented as a series of interrelated states
via a state diagram or events.

Referring to FIG. 4, at 402, the operations start. At 404,
the processing core 104 of a processor 102 may execute a
task including instructions encoding a transaction with a
persistent memory (e.g., persistent memory 114 of far
memory 112) via a volatile cache (e.g., the near memory

10

15

20

25

30

35

40

45

50

55

60

65

10

cache 110). The volatile cache may include a cache line to
cache data for the transaction with the persistent memory.
The cache line may include a status flag to indicate whether
the cache line is committed or uncommitted.

A cache controller 106 of the processor 102 may monitor
the transaction between the processing core 104 and the
persistent memory 114. The start of the transaction may be
marked by the execution of a PXBEGIN instruction. The
transaction may commit by the execution of a PXEND
instruction. As discussed before, the cache line may be in a
commit state or an uncommitted state. At 406, the cache
controller may detect the occurrence of a failure event (e.g.,
a system failure or power failure).

At 408, the cache controller 106 may determine whether
the cache line is in the committed or uncommitted state
based on the value stored in the cache line status flag. The
cache line status may have been set by the cache controller
according to writes to the persistent memory. The value of
the cache line status flag may indicate one of free, uncom-
mitted, or committed state.

In response to determining that the cache line is in the
committed state, at 410, the cache controller 106 may evict
the content stored in the cache line for the transaction to the
persistent memory 116. In response to determining that the
cache line is uncommitted, at 412, the cache controller 106
may discard the content of the cache line, thus preventing
the copy of data from uncommitted cache to the persistent
memory. Thus, the content stored in the near memory cache
110 is guaranteed to be consistent with the data stored in the
persistent memory 114.

FIG. 5A is a block diagram illustrating a micro-architec-
ture for a processor 500 that implements the processing
device including heterogeneous cores in accordance with
one embodiment of the disclosure. Specifically, processor
500 depicts an in-order architecture core and a register
renaming logic, out-of-order issue/execution logic to be
included in a processor according to at least one embodi-
ment of the disclosure.

Processor 500 includes a front end unit 530 coupled to an
execution engine unit 550, and both are coupled to a
memory unit 570. The processor 500 may include a reduced
instruction set computing (RISC) core, a complex instruc-
tion set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, processor 500 may include a special-purpose
core, such as, for example, a network or communication
core, compression engine, graphics core, or the like. In one
embodiment, processor 500 may be a multi-core processor
or may part of a multi-processor system.

The front end unit 530 includes a branch prediction unit
532 coupled to an instruction cache unit 534, which is
coupled to an instruction translation lookaside buffer (TLB)
536, which is coupled to an instruction fetch unit 538, which
is coupled to a decode unit 540. The decode unit 540 (also
known as a decoder) may decode instructions, and generate
as an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decoder
540 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only
memories (ROMs), etc. The instruction cache unit 534 is
further coupled to the memory unit 570. The decode unit 540
is coupled to a rename/allocator unit 552 in the execution
engine unit 550.

US 9,430,396 B2

11

The execution engine unit 550 includes the rename/
allocator unit 552 coupled to a retirement unit 554 and a set
of one or more scheduler unit(s) 556. The scheduler unit(s)
556 represents any number of different schedulers, including
reservations stations (RS), central instruction window, etc.
The scheduler unit(s) 556 is coupled to the physical register
file(s) unit(s) 558. Each of the physical register file(s) units
558 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, etc.,
status (e.g., an instruction pointer that is the address of the
next instruction to be executed), etc. The physical register
file(s) unit(s) 558 is overlapped by the retirement unit 554 to
illustrate various ways in which register renaming and
out-of-order execution may be implemented (e.g., using a
reorder buffer(s) and a retirement register file(s), using a
future file(s), a history buffer(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.).

In one implementation, processor 500 may be the same as
processor 102 described with respect to FIG. 1A.

Generally, the architectural registers are visible from the
outside of the processor or from a programmer’s perspec-
tive. The registers are not limited to any known particular
type of circuit. Various different types of registers are
suitable as long as they are capable of storing and providing
data as described herein. Examples of suitable registers
include, but are not limited to, dedicated physical registers,
dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. The retirement unit 554 and the
physical register file(s) unit(s) 558 are coupled to the execu-
tion cluster(s) 560. The execution cluster(s) 560 includes a
set of one or more execution units 562 and a set of one or
more memory access units 564. The execution units 562
may perform various operations (e.g., shifts, addition, sub-
traction, multiplication) and operate on various types of data
(e.g., scalar floating point, packed integer, packed floating
point, vector integer, vector floating point).

While some embodiments may include a number of
execution units dedicated to specific functions or sets of
functions, other embodiments may include only one execu-
tion unit or multiple execution units that all perform all
functions. The scheduler unit(s) 556, physical register file(s)
unit(s) 558, and execution cluster(s) 560 are shown as being
possibly plural because certain embodiments create separate
pipelines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/
packed floating point/vector integer/vector floating point
pipeline, and/or a memory access pipeline that each have
their own scheduler unit, physical register file(s) unit, and/or
execution cluster—and in the case of a separate memory
access pipeline, certain embodiments are implemented in
which only the execution cluster of this pipeline has the
memory access unit(s) 564). It should also be understood
that where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
in-order.

The set of memory access units 564 is coupled to the
memory unit 570, which may include a data prefetcher 580,
a data TLB unit 572, a data cache unit (DCU) 574, and a
level 2 (I.2) cache unit 576, to name a few examples. In
some embodiments DCU 574 is also known as a first level
data cache (L1 cache). The DCU 574 may handle multiple
outstanding cache misses and continue to service incoming
stores and loads. It also supports maintaining cache coher-
ency. The data TLLB unit 572 is a cache used to improve

20

25

35

40

45

50

12

virtual address translation speed by mapping virtual and
physical address spaces. In one exemplary embodiment, the
memory access units 564 may include a load unit, a store
address unit, and a store data unit, each of which is coupled
to the data TLB unit 572 in the memory unit 570. The [.2
cache unit 576 may be coupled to one or more other levels
of cache and eventually to a main memory.

In one embodiment, the data prefetcher 580 speculatively
loads/prefetches data to the DCU 574 by automatically
predicting which data a program is about to consume.
Prefeteching may refer to transferring data stored in one
memory location of a memory hierarchy (e.g., lower level
caches or memory) to a higher-level memory location that is
closer (e.g., yields lower access latency) to the processor
before the data is actually demanded by the processor. More
specifically, prefetching may refer to the early retrieval of
data from one of the lower level caches/memory to a data
cache and/or prefetch buffer before the processor issues a
demand for the specific data being returned.

The processor 500 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes a
separate instruction and data cache units and a shared 1.2
cache unit, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

FIG. 5B is a block diagram illustrating an in-order pipe-
line and a register renaming stage, out-of-order issue/execu-
tion pipeline implemented by processing device 500 of FIG.
5A according to some embodiments of the disclosure. The
solid lined boxes in FIG. 5B illustrate an in-order pipeline,
while the dashed lined boxes illustrates a register renaming,
out-of-order issue/execution pipeline. In FIG. 5B, a proces-
sor pipeline 500 includes a fetch stage 502, a length decode
stage 504, a decode stage 506, an allocation stage 508, a
renaming stage 510, a scheduling (also known as a dispatch
or issue) stage 512, a register read/memory read stage 514,
an execute stage 516, a write back/memory write stage 518,
an exception handling stage 522, and a commit stage 524. In
some embodiments, the ordering of stages 502-524 may be
different than illustrated and are not limited to the specific
ordering shown in FIG. 5B.

FIG. 6 illustrates a block diagram of the micro-architec-
ture for a processor 600 that includes hybrid cores in
accordance with one embodiment of the disclosure. In some
embodiments, an instruction in accordance with one

US 9,430,396 B2

13

embodiment can be implemented to operate on data ele-
ments having sizes of byte, word, doubleword, quadword,
etc., as well as datatypes, such as single and double precision
integer and floating point datatypes. In one embodiment the
in-order front end 601 is the part of the processor 600 that
fetches instructions to be executed and prepares them to be
used later in the processor pipeline.

The front end 601 may include several units. In one
embodiment, the instruction prefetcher 626 fetches instruc-
tions from memory and feeds them to an instruction decoder
628 which in turn decodes or interprets them. For example,
in one embodiment, the decoder decodes a received instruc-
tion into one or more operations called “micro-instructions”
or “micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the instruction into an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations in accordance with one embodiment. In
one embodiment, the trace cache 630 takes decoded uops
and assembles them into program ordered sequences or
traces in the uop queue 634 for execution. When the trace
cache 630 encounters a complex instruction, the microcode
ROM 632 provides the vops needed to complete the opera-
tion.

Some instructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, if more than four micro-ops
are needed to complete an instruction, the decoder 628
accesses the microcode ROM 632 to do the instruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction
decoder 628. In another embodiment, an instruction can be
stored within the microcode ROM 632 should a number of
micro-ops be needed to accomplish the operation. The trace
cache 630 refers to an entry point programmable logic array
(PLA) to determine a correct micro-instruction pointer for
reading the micro-code sequences to complete one or more
instructions in accordance with one embodiment from the
micro-code ROM 632. After the microcode ROM 632
finishes sequencing micro-ops for an instruction, the front
end 601 of the machine resumes fetching micro-ops from the
trace cache 630.

The out-of-order execution engine 603 is where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buffers to smooth out and
re-order the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute. The
register renaming logic renames logic registers onto entries
in a register file. The allocator also allocates an entry for
each vop in one of the two uop queues, one for memory
operations and one for non-memory operations, in front of
the instruction schedulers: memory scheduler, fast scheduler
602, slow/general floating point scheduler 604, and simple
floating point scheduler 606. The uop schedulers 602, 604,
606, determine when a uop is ready to execute based on the
readiness of their dependent input register operand sources
and the availability of the execution resources the uops need
to complete their operation. The fast scheduler 602 of one
embodiment can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per
main processor clock cycle. The schedulers arbitrate for the
dispatch ports to schedule vops for execution.

Register files 608, 610, sit between the schedulers 602,
604, 606, and the execution units 612, 614, 616, 618, 620,
622, 624 in the execution block 611. There is a separate

20

40

45

55

14

register file 608, 610, for integer and floating point opera-
tions, respectively. Each register file 608, 610, of one
embodiment also includes a bypass network that can bypass
or forward just completed results that have not yet been
written into the register file to new dependent uops. The
integer register file 608 and the floating point register file
610 are also capable of communicating data with the other.
For one embodiment, the integer register file 608 is split into
two separate register files, one register file for the low order
32 bits of data and a second register file for the high order
32 bits of data. The floating point register file 610 of one
embodiment has 128 bit wide entries because floating point
instructions typically have operands from 64 to 128 bits in
width.

The execution block 611 contains the execution units 612,
614, 616, 618, 620, 622, 624, where the instructions are
actually executed. This section includes the register files
608, 610, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 600 of one embodiment is comprised of a
number of execution units: address generation unit (AGU)
612, AGU 614, fast ALU 616, fast ALU 618, slow ALU 620,
floating point ALU 622, floating point move unit 624. For
one embodiment, the floating point execution blocks 622,
624, execute floating point, MMX, SIMD, and SSE, or other
operations. The floating point AL U 622 of one embodiment
includes a 64 bit by 64 bit floating point divider to execute
divide, square root, and remainder micro-ops. For embodi-
ments of the present disclosure, instructions involving a
floating point value may be handled with the floating point
hardware.

In one embodiment, the ALU operations go to the high-
speed ALU execution units 616, 618. The fast ALUs 616,
618, of one embodiment can execute fast operations with an
effective latency of half a clock cycle. For one embodiment,
most complex integer operations go to the slow ALU 620 as
the slow ALU 620 includes integer execution hardware for
long latency type of operations, such as a multiplier, shifts,
flag logic, and branch processing. Memory load/store opera-
tions are executed by the AGUs 612, 614. For one embodi-
ment, the integer ALLUs 616, 618, 620, are described in the
context of performing integer operations on 64 bit data
operands. In alternative embodiments, the ALUs 616, 618,
620, can be implemented to support a variety of data bits
including 16, 32, 128, 256, etc. Similarly, the floating point
units 622, 624, can be implemented to support a range of
operands having bits of various widths. For one embodi-
ment, the floating point units 622, 624, can operate on 128
bits wide packed data operands in conjunction with SIMD
and multimedia instructions.

In one embodiment, the uops schedulers 602, 604, 606,
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed in processor 600, the processor 600 also includes
logic to handle memory misses. If a data load misses in the
data cache, there can be dependent operations in flight in the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes
instructions that use incorrect data. Only the dependent
operations need to be replayed and the independent ones are
allowed to complete. The schedulers and replay mechanism
of one embodiment of a processor are also designed to catch
instruction sequences for text string comparison operations.

The processor 600 also includes logic to implement store
address prediction for memory disambiguation according to
embodiments of the disclosure. In one embodiment, the
execution block 611 of processor 600 may include a store

US 9,430,396 B2

15

address predictor (not shown) for implementing store
address prediction for memory disambiguation.

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to
identify operands. In other words, registers may be those
that are usable from the outside of the processor (from a
programmer’s perspective). However, the registers of an
embodiment should not be limited in meaning to a particular
type of circuit. Rather, a register of an embodiment is
capable of storing and providing data, and performing the
functions described herein. The registers described herein
can be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. In one embodiment,
integer registers store thirty-two bit integer data. A register
file of one embodiment also contains eight multimedia
SIMD registers for packed data.

For the discussions below, the registers are understood to
be data registers designed to hold packed data, such as 64
bits wide MMXTM registers (also referred to as ‘mm’
registers in some instances) in microprocessors enabled with
MMX technology from Intel Corporation of Santa Clara,
Calif. These MMX registers, available in both integer and
floating point forms, can operate with packed data elements
that accompany SIMD and SSE instructions. Similarly, 128
bits wide XMM registers relating to SSE2, SSE3, SSE4, or
beyond (referred to generically as “SSEx”) technology can
also be used to hold such packed data operands. In one
embodiment, in storing packed data and integer data, the
registers do not need to differentiate between the two data
types. In one embodiment, integer and floating point are
either contained in the same register file or different register
files. Furthermore, in one embodiment, floating point and
integer data may be stored in different registers or the same
registers.

Referring now to FIG. 7, shown is a block diagram
illustrating a system 700 in which an embodiment of the
disclosure may be used. As shown in FIG. 7, multiprocessor
system 700 is a point-to-point interconnect system, and
includes a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. While shown
with only two processors 770, 780, it is to be understood that
the scope of embodiments of the disclosure is not so limited.
In other embodiments, one or more additional processors
may be present in a given processor. In one embodiment, the
multiprocessor system 700 may implement hybrid cores as
described herein.

Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Proces-
sor 770 also includes as part of its bus controller units
point-to-point (P-P) interfaces 776 and 778; similarly, sec-
ond processor 780 includes P-P interfaces 786 and 788.
Processors 770, 780 may exchange information via a point-
to-point (P-P) interface 750 using P-P interface circuits 778,
788. As shown in FIG. 7, IMCs 772 and 782 couple the
processors to respective memories, namely a memory 732
and a memory 734, which may be portions of main memory
locally attached to the respective processors.

Processors 770, 780 may each exchange information with
a chipset 790 via individual P-P interfaces 752, 754 using
point to point interface circuits 776, 794, 786, 798. Chipset
790 may also exchange information with a high-perfor-
mance graphics circuit 738 via a high-performance graphics
interface 739.

10

15

20

25

30

40

45

50

55

60

65

16

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present disclo-
sure is not so limited.

As shown in FIG. 7, various [/O devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodi-
ment, second bus 720 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 720 includ-
ing, for example, a keyboard and/or mouse 722, communi-
cation devices 727 and a storage unit 728 such as a disk drive
or other mass storage device which may include instruc-
tions/code and data 730, in one embodiment. Further, an
audio I/O 724 may be coupled to second bus 720. Note that
other architectures are possible. For example, instead of the
point-to-point architecture of FIG. 7, a system may imple-
ment a multi-drop bus or other such architecture.

Referring now to FIG. 8, shown is a block diagram of a
system 800 in which one embodiment of the disclosure may
operate. The system 800 may include one or more proces-
sors 810, 815, which are coupled to graphics memory
controller hub (GMCH) 820. The optional nature of addi-
tional processors 815 is denoted in FIG. 8 with broken lines.
In one embodiment, processors 810, 815 implement hybrid
cores according to embodiments of the disclosure.

Each processor 810, 815 may be some version of the
circuit, integrated circuit, processor, and/or silicon inte-
grated circuit as described above. However, it should be
noted that it is unlikely that integrated graphics logic and
integrated memory control units would exist in the proces-
sors 810, 815. FIG. 8 illustrates that the GMCH 820 may be
coupled to a memory 840 that may be, for example, a
dynamic random access memory (DRAM). The DRAM
may, for at least one embodiment, be associated with a
non-volatile cache.

The GMCH 820 may be a chipset, or a portion of a
chipset. The GMCH 820 may communicate with the pro-
cessor(s) 810, 815 and control interaction between the
processor(s) 810, 815 and memory 840. The GMCH 820
may also act as an accelerated bus interface between the
processor(s) 810, 815 and other elements of the system 800.
For at least one embodiment, the GMCH 820 communicates
with the processor(s) 810, 815 via a multi-drop bus, such as
a frontside bus (FSB) 895.

Furthermore, GMCH 820 is coupled to a display 845
(such as a flat panel or touchscreen display). GMCH 820
may include an integrated graphics accelerator. GMCH 820
is further coupled to an input/output (I/O) controller hub
(ICH) 850, which may be used to couple various peripheral
devices to system 800. Shown for example in the embodi-
ment of FIG. 8 is an external graphics device 860, which
may be a discrete graphics device, coupled to ICH 850,
along with another peripheral device 870.

Alternatively, additional or different processors may also
be present in the system 800. For example, additional
processor(s) 815 may include additional processors(s) that
are the same as processor 810, additional processor(s) that
are heterogeneous or asymmetric to processor 810, accel-
erators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or

US 9,430,396 B2

17

any other processor. There can be a variety of differences
between the processor(s) 810, 815 in terms of a spectrum of
metrics of merit including architectural, micro-architectural,
thermal, power consumption characteristics, and the like.
These differences may effectively manifest themselves as
asymmetry and heterogeneity amongst the processors 810,
815. For at least one embodiment, the various processors
810, 815 may reside in the same die package.

Referring now to FIG. 9, shown is a block diagram of a
system 900 in which an embodiment of the disclosure may
operate. FIG. 9 illustrates processors 970, 980. In one
embodiment, processors 970, 980 may implement hybrid
cores as described above. Processors 970, 980 may include
integrated memory and I/O control logic (“CL”) 972 and
982, respectively and intercommunicate with each other via
point-to-point interconnect 950 between point-to-point (P-P)
interfaces 978 and 988 respectively. Processors 970, 980
each communicate with chipset 990 via point-to-point inter-
connects 952 and 954 through the respective P-P interfaces
976 to 994 and 986 to 998 as shown. For at least one
embodiment, the CL 972, 982 may include integrated
memory controller units. CLs 972, 982 may include I/O
control logic. As depicted, memories 932, 934 coupled to
CLs 972, 982 and I/O devices 914 are also coupled to the
control logic 972, 982. Legacy /O devices 915 are coupled
to the chipset 990 via interface 996.

Embodiments may be implemented in many different
system types. FIG. 10 is a block diagram of a SoC 1000 in
accordance with an embodiment of the present disclosure.
Dashed lined boxes are optional features on more advanced
SoCs. In FIG. 10, an interconnect unit(s) 1012 is coupled to:
an application processor 1020 which includes a set of one or
more cores 1002A-N and shared cache unit(s) 1006; a
system agent unit 1010; a bus controller unit(s) 1016; an
integrated memory controller unit(s) 1014; a set or one or
more media processors 1018 which may include integrated
graphics logic 1008, an image processor 1024 for providing
still and/or video camera functionality, an audio processor
1026 for providing hardware audio acceleration, and a video
processor 1028 for providing video encode/decode accel-
eration; an static random access memory (SRAM) unit 1030;
a direct memory access (DMA) unit 1032; and a display unit
1040 for coupling to one or more external displays. In one
embodiment, a memory module may be included in the
integrated memory controller unit(s) 1014. In another
embodiment, the memory module may be included in one or
more other components of the SoC 1000 that may be used
to access and/or control a memory. The application proces-
sor 1020 may include a store address predictor for imple-
menting hybrid cores as described in embodiments herein.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache
units 1006, and external memory (not shown) coupled to the
set of integrated memory controller units 1014. The set of
shared cache units 1006 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof.

In some embodiments, one or more of the cores 1002A-N
are capable of multi-threading. The system agent 1010
includes those components coordinating and operating cores
1002A-N. The system agent unit 1010 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1002A-N and the
integrated graphics logic 1008. The display unit is for
driving one or more externally connected displays.

25

30

35

40

45

18

The cores 1002A-N may be homogenous or heteroge-
neous in terms of architecture and/or instruction set. For
example, some of the cores 1002A-N may be in order while
others are out-of-order. As another example, two or more of
the cores 1002A-N may be capable of execution the same
instruction set, while others may be capable of executing
only a subset of that instruction set or a different instruction
set.

The application processor 1020 may be a general-purpose
processor, such as a Core™ i3, i5, 17, 2 Duo and Quad,
Xeon™, Itanium™, Atom™ or Quark™ processor, which
are available from Intel™ Corporation, of Santa Clara, Calif.
Alternatively, the application processor 1020 may be from
another company, such as ARM Holdings™, [.td, MIPS™,
etc. The application processor 1020 may be a special-
purpose processor, such as, for example, a network or
communication processor, compression engine, graphics
processor, co-processor, embedded processor, or the like.
The application processor 1020 may be implemented on one
or more chips. The application processor 1020 may be a part
of and/or may be implemented on one or more substrates
using any of a number of process technologies, such as, for
example, BICMOS, CMOS, or NMOS.

FIG. 11 is a block diagram of an embodiment of a system
on-chip (SoC) design in accordance with the present disclo-
sure. As a specific illustrative example, SoC 1100 is included
in user equipment (UE). In one embodiment, UE refers to
any device to be used by an end-user to communicate, such
as a hand-held phone, smartphone, tablet, ultra-thin note-
book, notebook with broadband adapter, or any other similar
communication device. Often a UE connects to a base
station or node, which potentially corresponds in nature to a
mobile station (MS) in a GSM network.

Here, SOC 1100 includes 2 cores—1106 and 1107. Cores
1106 and 1107 may conform to an Instruction Set Architec-
ture, such as an Intel® Architecture Core™.-based processor,
an Advanced Micro Devices, Inc. (AMD) processor, a
MIPS-based processor, an ARM-based processor design, or
a customer thereof, as well as their licensees or adopters.
Cores 1106 and 1107 are coupled to cache control 1108 that
is associated with bus interface unit 1109 and L2 cache 1110
to communicate with other parts of system 1100. Intercon-
nect 1110 includes an on-chip interconnect, such as an IOSF,
AMBA, or other interconnect discussed above, which poten-
tially implements one or more aspects of the described
disclosure. In one embodiment, cores 1106, 1107 may
implement hybrid cores as described in embodiments herein.

Interconnect 1110 provides communication channels to
the other components, such as a Subscriber Identity Module
(SIM) 1130 to interface with a SIM card, a boot ROM 1135
to hold boot code for execution by cores 1106 and 1107 to
initialize and boot SoC 1100, a SDRAM controller 1140 to
interface with external memory (e.g. DRAM 1160), a flash
controller 1145 to interface with non-volatile memory (e.g.
Flash 1165), a peripheral control 1150 (e.g. Serial Peripheral
Interface) to interface with peripherals, video codecs 1120
and Video interface 1125 to display and receive input (e.g.
touch enabled input), GPU 1115 to perform graphics related
computations, etc. Any of these interfaces may incorporate
aspects of the disclosure described herein. In addition, the
system 1100 illustrates peripherals for communication, such
as a Bluetooth module 1170, 3G modem 1175, GPS 1180,
and Wi-Fi 1185.

FIG. 12 illustrates a diagrammatic representation of a
machine in the example form of a computer system 1200
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed

US 9,430,396 B2

19

herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a
client device in a client-server network environment, or as a
peer machine in a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The computer system 1200 includes a processing device
1202, a main memory 1204 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) (such as synchronous DRAM (SDRAM) or
DRAM (RDRAM), etc.), a static memory 1206 (e.g., flash
memory, static random access memory (SRAM), etc.), and
a data storage device 1218, which communicate with each
other via a bus 1230.

Processing device 1202 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, the
processing device may be complex instruction set comput-
ing (CISC) microprocessor, reduced instruction set com-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
instruction sets, or processors implementing a combination
of instruction sets. Processing device 1202 may also be one
or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. In one embodiment,
processing device 1202 may include one or processing
cores. The processing device 1202 is configured to execute
the processing logic 1226 for performing the operations and
steps discussed herein. In one embodiment, processing
device 1202 is the same as processor system 100 described
with respect to FIG. 1A as described herein with embodi-
ments of the disclosure.

The computer system 1200 may further include a network
interface device 1208 communicably coupled to a network
1220. The computer system 1200 also may include a video
display unit 1210 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 1212
(e.g., a keyboard), a cursor control device 1214 (e.g., a
mouse), and a signal generation device 1216 (e.g., a
speaker). Furthermore, computer system 1200 may include
a graphics processing unit 1222, a video processing unit
1228, and an audio processing unit 1232.

The data storage device 1218 may include a machine-
accessible storage medium 1224 on which is stored software
1226 implementing any one or more of the methodologies of
functions described herein, such as implementing store
address prediction for memory disambiguation as described
above. The software 1226 may also reside, completely or at
least partially, within the main memory 1204 as instructions
1226 and/or within the processing device 1202 as processing
logic 1226 during execution thereof by the computer system
1200; the main memory 1204 and the processing device
1202 also constituting machine-accessible storage media.

20

25

40

45

55

20

The machine-readable storage medium 1224 may also be
used to store instructions 1226 implementing store address
prediction for hybrid cores such as described according to
embodiments of the disclosure. While the machine-acces-
sible storage medium 1128 is shown in an example embodi-
ment to be a single medium, the term “machine-accessible
storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of instructions. The term “machine-acces-
sible storage medium” shall also be taken to include any
medium that is capable of storing, encoding or carrying a set
of instruction for execution by the machine and that cause
the machine to perform any one or more of the methodolo-
gies of the present disclosure. The term “machine-accessible
storage medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, and optical and
magnetic media.

The following examples pertain to further embodiments.
Example 1 is a processor including a processing core to
execute an application including instructions encoding a
transaction with a persistent memory via a volatile cache
that includes a cache line associated with the transaction, the
cache line being associated with a cache line status, and a
cache controller operatively coupled to the cache, the cache
controller, in response to detecting a failure event, to, in
response to determining that the cache line status that the
cache line is committed, evict contents of the cache line to
the persistent memory, and in response to determining that
the cache line status indicating that the cache line is uncom-
mitted, discard the contents of the cache line.

In Example 2, the subject matter of Example 1 can
optionally provide that the processing core is to execute a
transaction begin instruction to initiate the transaction, and
a transaction end instruction to conclude the transaction.

In Example 3, the subject matter of any Examples 1 and
2 can optionally provide that the processing core is to
execute a system call to a kernel to acquire a transaction
identifier prior to executing the transaction begin instruction
and to store the transaction identifier in a transaction iden-
tifier register, and wherein the processing core is further to
copy the transaction identifier to the cache line to associate
the cache line with the transaction.

In Example 4, the subject matter of Example 3 can
optionally provide that the cache controller comprises a hash
table referencing a plurality of dirty cache lines for a
plurality of transactions whose contents are different from
data stored in a corresponding location of the persistent
memory.

In Example 5, the subject matter of Example 4 can
optionally provide that in response to the failure event, the
processing core is to execute an abort instruction, and
wherein executing the abort instruction comprises transmit-
ting an abort message comprising the transaction identifier
to the cache controller.

In Example 6, the subject matter of Example 5 can
optionally provide that in response to receiving the abort
message, the cache controller is to identify and invalidate the
plurality of dirty cache lines for the plurality of transactions
based on the hash table.

In Example 7, the subject matter of any of Examples 1 and
2 can optionally provide that in response to detecting the
transaction begin instruction, the cache controller is to
assign the cache line a free state.

In Example 8, the subject matter of any of Examples 1 and
2 can optionally provide that in response to detecting a write

US 9,430,396 B2

21

to the location in the persistent memory by a second trans-
action, the cache controller is to assign the cache line the
uncommitted state.

In Example 9, the subject matter of any of Examples 1 and
2 can optionally provide that in response to detecting the
transaction end instruction, the cache controller is to assign
the cache line the committed state atomically.

In Example 10, the subject matter of any of Examples 1
and 2 can optionally provide that in response to detecting a
cache eviction event, the cache controller is to identify a
plurality of cache lines whose cache line status flags do not
indicate the uncommitted state and evict contents of the
plurality of cache lines to the persistent memory.

In Example 11, the subject matter of Example 1 can
optionally provide that in response to detecting an overtlow
of cache lines in the cache, the cache controller is to evict at
least one cache line to the persistent memory.

In Example 12, the subject matter of any of Examples 1
and 11 can optionally provide that the cache controller is
further to select the cache line to be evicted according to a
policy of resource usage.

In Example 13, the subject matter of any of Examples 1
and 11 can optionally provide that the persistent memory
comprises a data log comprising at least one of a redo log or
an undo log.

In Example 14, the subject matter of any of Examples 1
and 11 can further include a memory controller, in which in
response to detecting the transaction end instruction, the
cache controller is to instruct the memory controller to
commit the evicted at least one cache line in the persistent
memory.

In Example 15, the subject matter of Example 1 can
optionally provide that the volatile cache is part of a near
memory of a two-level memory system, and the persistent
memory is part of a far memory of the two-level memory
system.

In Example 16, the subject matter of Example 1 can
optionally provide that the volatile cache is a last level cache
(LLC) associated with the processor, and the persistent
memory is part of a far memory of a one-level memory
system.

Example 17 is a system-on-a-chip (SoC) including a
two-level memory including a first level including a volatile
cache, and a second level including a persistent memory, and
a processor, operatively coupled to the two-level memory,
including: a processing core, in response to receiving a
transaction begin instruction, to store a transaction identifier
in a transaction identifier register prior to executing a
transaction with the persistent memory and to copy the
transaction identifier to a cache line of the cache, and a cache
controller to evict the cache line tagged with the transaction
identifier from the cache to the persistent memory in
response to a cache eviction event based on a commit state
of the cache line.

In Example 18, the subject matter of Example 17 can
optionally provide that the cache controller, in response to
detecting a failure event, to in response to determining a
value of the cache line status flag being one of committed or
free, evict data stored in the cache line to the persistent
memory, and in response to determining that the value of a
cache line status flag associated with the cache line is
uncommitted, discard the cache line.

In Example 19, the subject matter of any of Examples 17
and 18 can optionally provide that the processing core is to
execute a system call to a kernel of an operating system to
acquire the transaction identifier prior to executing the
transaction begin instruction.

10

15

20

25

30

35

40

45

50

55

60

65

22

In Example 20, the subject matter of any of Examples 17
and 18 can optionally provide that the cache controller
comprises a hash table referencing a plurality of dirty cache
lines whose contents are different from data stored in a
correspondingly location of the persistent memory.

Example 21 is method including executing, by a process-
ing core, an application comprising instructions encoding a
transaction with a persistent memory via a volatile cache,
wherein the volatile cache comprises a cache line associated
with the transaction, the cache line being associated with a
cache line status, detecting a failure event occurred associ-
ated with the transaction, wherein the failure event requires
a reboot of a system that the processing core supports, in
response to determining that a status flag of the cache line
indicates a committed state, evicting contents of the cache
line to the persistent memory, and in response to determining
that the status flag of the cache line indicates an uncommit-
ted state, discarding the contents of the cache line.

In Example 22, the subject matter of Example 21 can
optionally provide that the processing core is to execute a
transaction begin instruction to initiate the transaction, and
a transaction end instruction to conclude the transaction.

In Example 23, the subject matter of any of Examples 21
and 22 can further include executing a system call to a kernel
to acquire a transaction identifier prior to executing the
transaction begin instruction, storing the transaction identi-
fier in a transaction identifier register of the processor, and
copying the transaction identifier to the cache line to asso-
ciate the cache line with the transaction.

Example 24 is an apparatus including means for perform-
ing the method of any of claims 21 and 22.

Example 25 is a machine-readable non-transitory medium
having stored thereon program codes that, when executed,
perform operations including executing, by a processing
core, an application comprising instructions encoding a
transaction with a persistent memory via a volatile cache,
wherein the volatile cache comprises a cache line associated
with the transaction, the cache line being associated with a
cache line status, detecting a failure event occurred associ-
ated with the transaction, wherein the failure event requires
a reboot of a system that the processing core supports, in
response to determining that a status flag of the cache line
indicates a committed state, evicting contents of the cache
line to the persistent memory, and in response to determining
that the status flag of the cache line indicates an uncommit-
ted state, discarding the contents of the cache line.

In Example 26, the subject matter of Example 25 can
optionally provide that the processing core is to execute a
transaction begin instruction to initiate the transaction, and
a transaction end instruction to conclude the transaction.

In Example 27, the subject matter of any of Examples 25
and 26 can further include executing a system call to a kernel
to acquire a transaction identifier prior to executing the
transaction begin instruction, storing the transaction identi-
fier in a transaction identifier register of the processor, and
copying the transaction identifier to the cache line to asso-
ciate the cache line with the transaction.

While the disclosure has been described with respect to a
limited number of embodiments, those skilled in the art will
appreciate numerous modifications and variations there
from. It is intended that the appended claims cover all such
modifications and variations as fall within the true spirit and
scope of this disclosure.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is
useful in simulations, the hardware may be represented

US 9,430,396 B2

23

using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Furthermore, most designs, at
some stage, reach a level of data representing the physical
placement of various devices in the hardware model. In the
case where conventional semiconductor fabrication tech-
niques are used, the data representing the hardware model
may be the data specifying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored in any form of a machine
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine readable medium
to store information transmitted via optical or electrical
wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design is transmitted, to the extent that
copying, buffering, or re-transmission of the electrical signal
is performed, a new copy is made. Thus, a communication
provider or a network provider may store on a tangible,
machine-readable medium, at least temporarily, an article,
such as information encoded into a carrier wave, embodying
techniques of embodiments of the present disclosure.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso-
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Therefore, reference to
a module, in one embodiment, refers to the hardware, which
is specifically configured to recognize and/or execute the
code to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the
non-transitory medium. Often module boundaries that are
illustrated as separate commonly vary and potentially over-
lap. For example, a first and a second module may share
hardware, software, firmware, or a combination thereof,
while potentially retaining some independent hardware,
software, or firmware. In one embodiment, use of the term
logic includes hardware, such as transistors, registers, or
other hardware, such as programmable logic devices.

Use of the phrase ‘configured to,” in one embodiment,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereof that is not
operating is still ‘configured to’ perform a designated task if
it is designed, coupled, and/or interconnected to perform
said designated task. As a purely illustrative example, a logic
gate may provide a 0 or a 1 during operation. But a logic gate
‘configured to’ provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or 0.
Instead, the logic gate is one coupled in some manner that
during operation the 1 or O output is to enable the clock.
Note once again that use of the term ‘configured to’ does not
require operation, but instead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent
state the apparatus, hardware, and/or element is designed to
perform a particular task when the apparatus, hardware,
and/or element is operating.

Furthermore, use of the phrases ‘to,” ‘capable of/to,” and
or ‘operable to,” in one embodiment, refers to some appa-

20

30

40

45

65

24

ratus, logic, hardware, and/or element designed in such a
way to enable use of the apparatus, logic, hardware, and/or
element in a specified manner. Note as above that use of to,
capable to, or operable to, in one embodiment, refers to the
latent state of an apparatus, logic, hardware, and/or element,
where the apparatus, logic, hardware, and/or element is not
operating but is designed in such a manner to enable use of
an apparatus in a specified manner.

A value, as used herein, includes any known representa-
tion of a number, a state, a logical state, or a binary logical
state. Often, the use of logic levels, logic values, or logical
values is also referred to as 1’s and 0’s, which simply
represents binary logic states. For example, a 1 refers to a
high logic level and O refers to a low logic level. In one
embodiment, a storage cell, such as a transistor or flash cell,
may be capable of holding a single logical value or multiple
logical values. However, other representations of values in
computer systems have been used. For example the decimal
number ten may also be represented as a binary value of 910
and a hexadecimal letter A. Therefore, a value includes any
representation of information capable of being held in a
computer system.

Moreover, states may be represented by values or portions
of' values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer
to a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, i.e. reset, while an updated value potentially includes
a low logical value, i.e. set. Note that any combination of
values may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via
instructions or code stored on a machine-accessible,
machine readable, computer accessible, or computer read-
able medium which are executable by a processing element.
A non-transitory machine-accessible/readable medium
includes any mechanism that provides (i.e., stores and/or
transmits) information in a form readable by a machine, such
as a computer or electronic system. For example, a non-
transitory machine-accessible medium includes random-ac-
cess memory (RAM), such as static RAM (SRAM) or
dynamic RAM (DRAM); ROM; magnetic or optical storage
medium; flash memory devices; electrical storage devices;
optical storage devices; acoustical storage devices; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g., carrier waves,
infrared signals, digital signals); etc., which are to be dis-
tinguished from the non-transitory mediums that may
receive information there from.

Instructions used to program logic to perform embodi-
ments of the disclosure may be stored within a memory in
the system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
anetwork or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by
a machine (e.g., a computer), but is not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-

US 9,430,396 B2

25

tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmit-
ting electronic instructions or information in a form readable
by a machine (e.g., a computer).
Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present disclosure. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.
In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the disclosure as set
forth in the appended claims. The specification and drawings
are, accordingly, to be regarded in an illustrative sense rather
than a restrictive sense. Furthermore, the foregoing use of
embodiment and other exemplarily language does not nec-
essarily refer to the same embodiment or the same example,
but may refer to different and distinct embodiments, as well
as potentially the same embodiment.
What is claimed is:
1. A processor comprising:
a processing core to execute an application comprising
instructions encoding a transaction with a persistent
memory via a volatile cache, wherein the volatile cache
comprises a cache line associated with the transaction,
the cache line being associated with a cache line status;
and
a cache controller operatively coupled to the volatile
cache, the cache controller, in response to detecting a
failure event, to:
in response to determining that the cache line status
indicates that the cache line is committed, evict
contents of the cache line to the persistent memory,
and

in response to determining the cache line status indi-
cates that the cache line is uncommitted, discard the
contents of the cache line.

2. The processor of claim 1, wherein the processing core
is to execute a transaction begin instruction to initiate the
transaction, and a transaction end instruction to conclude the
transaction.

3. The processor of claim 2, wherein the processing core
is to execute a system call to a kernel to acquire a transaction
identifier prior to executing the transaction begin instruction
and to store the transaction identifier in a transaction iden-
tifier register, and wherein the processing core is further to
copy the transaction identifier to the cache line to associate
the cache line with the transaction.

4. The processor of claim 3, wherein the cache controller
comprises a hash table referencing a plurality of dirty cache
lines for a plurality of transactions whose contents are
different from data stored in a corresponding location of the
persistent memory.

5. The processor of claim 4, wherein, in response to the
failure event, the processing core is to execute an abort
instruction, and wherein executing the abort instruction
comprises transmitting an abort message comprising the
transaction identifier to the cache controller.

30

35

40

45

50

55

60

65

26

6. The processor of claim 5, wherein, in response to
receiving the abort message, the cache controller is to
identify and invalidate the plurality of dirty cache lines for
the plurality of transactions based on the hash table.
7. The processor of claim 2, wherein, in response to
detecting the transaction begin instruction, the cache con-
troller is to assign the cache line a free state.
8. The processor of claim 2, wherein, in response to
detecting a write to the location in the persistent memory by
a second transaction, the cache controller is to assign the
cache line the uncommitted state.
9. The processor of claim 2, wherein, in response to
detecting the transaction end instruction, the cache control-
ler is to assign the cache line the committed state atomically.
10. The processor of claim 2, wherein, in response to
detecting a cache eviction event, the cache controller is to
identify a plurality of cache lines whose cache line status
flags do not indicate the uncommitted state and evict con-
tents of the plurality of cache lines to the persistent memory.
11. The processor of claim 1, wherein, in response to
detecting an overflow of cache lines in the cache, the cache
controller is to evict at least one cache line to the persistent
memory.
12. The processor of claim 11, wherein the cache con-
troller is further to select the cache line to be evicted
according to a policy of resource usage.
13. The processor of claim 11, wherein the persistent
memory comprises a data log comprising at least one of a
redo log or an undo log.
14. The processor of claim 11, further comprising a
memory controller, wherein, in response to detecting the
transaction end instruction, the cache controller is to instruct
the memory controller to commit the evicted at least one
cache line in the persistent memory.
15. The processor of claim 1, wherein the volatile cache
is part of a near memory of a two-level memory system, and
the persistent memory is part of a far memory of the
two-level memory system.
16. The processor of claim 1, wherein the volatile cache
is a last level cache (LLC) associated with the processor, and
the persistent memory is part of a far memory of a one-level
memory system.
17. A system-on-a-chip (SoC) comprising:
a two-level memory comprising a first level comprising a
volatile cache, and a second level comprising a persis-
tent memory, and
a processor, operatively coupled to the two-level memory,
comprising:
aprocessing core, in response to receiving a transaction
begin instruction, to store a transaction identifier in
a transaction identifier register prior to executing a
transaction with the persistent memory and to copy
the transaction identifier to a cache line of the
volatile cache; and

a cache controller to evict the cache line tagged with the
transaction identifier from the cache to the persistent
memory in response to a cache eviction event based
on a commit state of the cache line.

18. The SoC of claim 17, wherein the cache controller, in
response to detecting a failure event, to:

in response to determining a value of the cache line status
flag being one of committed or free, evict data stored in
the cache line to the persistent memory, and

in response to determining that the value of a cache line
status flag associated with the cache line is uncommit-
ted, discard the cache line.

US 9,430,396 B2

27

19. The SoC of claim 18, wherein the processing core is
to execute a system call to a kernel of an operating system
to acquire the transaction identifier prior to executing the
transaction begin instruction.

20. The SoC of claim 18, wherein the cache controller
comprises a hash table referencing a plurality of dirty cache
lines whose contents are different from data stored in a
correspondingly location of the persistent memory.

21. A method comprising:

executing, by a processing core, an application compris-
ing instructions encoding a transaction with a persistent
memory via a volatile cache, wherein the volatile cache
comprises a cache line associated with the transaction,
the cache line being associated with a cache line status;

detecting a failure event occurred associated with the

transaction, wherein the failure event requires a reboot
of a system that the processing core supports;

10

15

28

in response to determining that a status flag of the cache
line indicates a committed state, evicting contents of
the cache line to the persistent memory; and

in response to determining that the status flag of the cache

line indicates an uncommitted state, discarding the
contents of the cache line.

22. The method of claim 21, wherein the processing core
is to execute a transaction begin instruction to initiate the
transaction, and a transaction end instruction to conclude the
transaction.

23. The method of claim 22, further comprising:

executing a system call to a kernel to acquire a transaction

identifier prior to executing the transaction begin
instruction;

storing the transaction identifier in a transaction identifier

register of the processor; and

copying the transaction identifier to the cache line to

associate the cache line with the transaction.

#* #* #* #* #*

